1. Ackleson, S., Balch, W. M., & Holligan, P. M. (1988). White waters of the Gulf of Maine. Oceanography, 1(2), 18-22.
  2. Addadi, L., Joester, D., Nudelman, F., & Weiner, S. (2006). Mollusk shell formation: a source of new concepts for understanding biomineralization processes. Chemistry-A European Journal, 12(4), 980-987.
  3. Aizawa, C., Oba, T., & Okada, H. (2004). Late Quaternary paleoceanography deduced from coccolith assemblages in a piston core recovered off the central Japan coast. Marine Micropaleontology, 52(1), 277-297.
  4. Aksu, A. E., Hiscott, R. N., Kaminski, M. A., Mudie, P. J., Gillespie, H., Abrajano, T., & Yaşar, D. (2002). Last glacial–Holocene paleoceanography of the Black Sea and Marmara Sea: stable isotopic, foraminiferal and coccolith evidence. Marine Geology, 190(1), 119-149.
  5. Alcober, J., & Jordan, R. W. (1997). An interesting association between Neosphaera coccolithomorpha and Ceratolithus cristatus (Haptophyta). European Journal of Phycology, 32(01), 91-93.
  6. Anning, T., Nimer, N., Merrett, M. J., & Brownlee, C. (1996). Costs and benefits of calcification in coccolithophorids. Journal of marine systems, 9(1), 45-56.
  7. Archer, D., Winguth, A., Lea, D., & Mahowald, N. (2000). What caused the glacial/interglacial atmospheric pCO2 cycles?. Reviews of Geophysics -Richmond Virginia then Washington-, 38(2), 159-190.
  8. Ariovich, D., & Pienaar, R. N. (1979). The role of light in the incorporation and utilization of Ca++ ions by Hymenomonas carterae (Braarud et Fagerl.) Braarud (Prymnesiophyceae). British Phycological Journal, 14(1), 17-24.
  9. Aubry, M. P. (1995). From chronology to stratigraphy: interpreting the lower and middle Eocene stratigraphic record in the Atlantic Ocean. In Berggren, W. A., Kent, D. V., Aubry, M. P., & Hardenbol, J. (Eds.). (1995). Geochronology, time scales and global stratigraphic correlation. SEPM Special Publication nº54.
  10. Aubry, M. P. (2007). A major Pliocene coccolithophore turnover: Change in morphological strategy in the photic zone. Geological Society of America Special Papers, 424, 25-51.
  11. Aubry, M. P. (2009). A sea of lilliputians. Palaeogeography, Palaeoclimatology, Palaeoecology, 284(1), 88-113.
  12. Aubry, M. P. (2014). 13. Late Paleogene Calcareous Nannoplankton Evolution: a Tale of Climatic Deterioration. Eocene-Oligocene Climatic and biotic evolution, 272.
  13. Aubry, M. P., & Bord, D. (2009). Reshuffling the cards in the photic zone at the Eocene/Oligocene boundary. Geological Society of America Special Papers,452, 279-301.
  14. Aubry, M. P., Bord, D., & Rodriguez, O. (2011). New taxa of the Order Discoasterales Hay 1977. Micropaleontology, 269-287.
  15. Aubry, M. P., & Kahn, A. (2006). New coccolithophores from the deep photic zone: Implications for evolutionary morphological convergence in the calcareous nannoplankton. Micropaleontology, 52(5), 411-432.
  16. Aubry, M. P., Rodriguez, O., Bord, D., Godfrey, L., Schmitz, B., & Knox, R. W. B. (2012). The first radiation of the Fasciculiths: morphologic adaptations of the coccolithophores to oligotrophy. Austrian Journal of Earth Sciences, 105(1), 29-38.
  17. Aubry, M. P., & Salem, R. (2012). The Dababiya Core: A window into Paleocene to Early Eocene depositional history in Egypt based on coccolith stratigraphy. Stratigraphy, 9(3-4), 287-346.
  18. Balch, W. M. (s.d.). Using new techniques for re-evaluating the physiological ecology of coccolithophores., 04.09.2015.
  19. Balch, W. M., Holligan, P. M., Ackleson, S. G., & Voss, K. J. (1991). Biological and optical properties of mesoscale coccolithophore blooms in the Gulf of Maine. Limnology and Oceanography, 36(4), 629-643.
  20. Barker, S., & Elderfield, H. (2002). Foraminiferal calcification response to glacial-interglacial changes in atmospheric CO2. Science, 297(5582), 833-836.
  21. Baumann, K. H., Andruleit, H., Böckel, B., Geisen, M., & Kinkel, H. (2005). The significance of extant coccolithophores as indicators of ocean water masses, surface water temperature, and palaeoproductivity: a review. Paläontologische Zeitschrift, 79(1), 93-112.
  22. Baumann, K. H., Andruleit, H., & Samtleben, C. (2000). Coccolithophores in the Nordic Seas: comparison of living communities with surface sediment assemblages. Deep Sea Research Part II: Topical Studies in Oceanography, 47(9), 1743-1772.
  23. Beaufort, L., Probert, I., de Garidel-Thoron, T., Bendif, E. M., Ruiz-Pino, D., Metzl, N., … & De Vargas, C. (2011). Sensitivity of coccolithophores to carbonate chemistry and ocean acidification. Nature, 476(7358), 80-83.
  24. Beech, P. L., Wetherbee, R., & Pickett-Heaps, J. D. (1988). Transformation of the flagella and associated flagellar components during cell division in the coccolithophorid Pleurochrysis carterae. Protoplasma, 145(1), 37-46.
  25. Beech, P. L., & Wetherbee, R. (1984). Serial reconstruction of the mitochondrial reticulum in the coccolithophorid, Pleurochrysis carterae (Prymnesiophyceae). Protoplasma, 123(3), 226-229.
  26. Berggren, W. A., Kent, D. V., Swisher, III, C. C., & Aubry, M.-P. (1995). A revised Cenozoic geochronology and chronostratigraphy. Geochronology Time Scales and Global Stratigraphic Correlation, SEPM Special Publication No. 54.
  27. Billard, C., & Gayral, P. (1972). Two new species of Isochrysis with remarks on the genus Ruttnera. British Phycological Journal, 7(3), 289-297.
  28. Birkhead, M., & Pienaar, R. N. (1994). The flagellar apparatus of Prymnesium nemamethecum (Prymnesiophyceae). Phycologia, 33(5), 311-323.
  29. Birkhead, M., & Pienaar, R. N. (1994). The ultrastructure of Chrysochromulina brevifilum (Prymnesiophyceae). European Journal of Phycology, 29(4), 267-280.
  30. Black, M. (1968). Taxonomic problems in the study of coccoliths.Palaeontology, 11(5), 793-813.
  31. Blackford, J. C. (2010). Predicting the impacts of ocean acidification: Challenges from an ecosystem perspective. Journal of Marine Systems, 81(1), 12-18.
  32. Boalch, G. T. (1987). Changes in the phytoplankton of the western English Channel in recent years. British Phycological Journal, 22(3), 225-235.
  33. Boenigk, J., Ereshefsky, M., Hoef-Emden, K., Mallet, J., & Bass, D. (2012). Concepts in protistology: species definitions and boundaries. European journal of protistology, 48(2), 96-102.
  34. Bollmann, J., Cortés, M. Y., Kleijne, A., Østergaard, J. B., & Young, J. R. (2006). Solisphaera gen. nov.(Prymnesiophyceae), a new coccolithophore genus from the lower photic zone. Phycologia, 45(4), 465-477.
  35. Borman, A. H., JONG, E. W., Huizinga, M., Kok, D. J., Westbroek, P., & Bosch, L. (1982). The Role in CaCO3 Crystallization of an Acid Ca2+‐Binding Polysaccharide Associated with Coccoliths of Emiliania huxleyi. European Journal of Biochemistry, 129(1), 179-183.
  36. Bornemann, A., Aschwer, U., & Mutterlose, J. (2003). The impact of calcareous nannofossils on the pelagic carbonate accumulation across the Jurassic – Cretaceous boundary. Palaeogeography, Palaeoclimatology, Palaeoecology, 199(3), 187-228.
  37. Bown, P. R. (2005). Palaeogene calcareous nannofossils from the Kilwa and Lindi areas of coastal Tanzania (Tanzania Drilling Project Sites 1 to 10, 2003-4). Journal of Nannoplankton Research, 27(1), 21-95.
  38. Bown, P. R., Dunkley Jones, T., Young, J. R., & Randell, R. (2009). A Palaeogene record of extant lower photic zone calcareous nannoplankton. Palaeontology, 52(2), 457-469.
  39. Bown, P. R., Lees, J. A., & Young, J. R. (2004). Calcareous nannoplankton evolution and diversity through time. In Coccolithophores (pp. 481-508). Springer Berlin Heidelberg.
  40. Bown, P. R., & Young, J. R. (1997). Proposals for a revised classification system for calcareous nannoplankton. Journal of Nannoplankton Research, 19, 15-47.
  41. Braarud, T. (1979). The temperature range of the non-motile stage of Coccolithus pelagicus in the North Atlantic region. British Phycological Journal,14(4), 349-352.
  42. Braarud, T., Gaarder, K. R., & Nordli, O. (1958). Seasonal changes in the phytoplankton at various points off the Norwegian West Coast:(Observations at the permanent oceanographic stations, 1945-46).
  43. Brown, C. W., & Podesta, G. P. (1997). Remote sensing of coccolithophore blooms in the western South Atlantic Ocean. Remote Sensing of Environment, 60(1), 83-91.
  44. Brown, R. M. (1969). Observations on the relationship of the Golgi apparatus to wall formation in the marine chrysophycean alga, Pleurochrysis scherffelii Pringsheim. The Journal of cell biology, 41(1), 109-123.
  45. Brown, R. M., & Romanovicz, D. K. (1976). Biogenesis and structure of Golgi-derived cellulosic scales in Pleurochrysis. I. Role of the endomembrane system in scale assembly and exocytosis. In Applied Polymer Symposium (Vol. 28, pp. 537-585).
  46. Brown, C. W., & Yoder, J. A. (1994). Coccolithophorid blooms in the global ocean. Journal of Geophysical Research -All Series-, 99, 7467-7467.
  47. Brand, L. E. (1982). Genetic variability and spatial patterns of genetic differentiation in the reproductive rates of the marine coccolithophores Emiliania huxleyi and Gephyrocapsa oceanica. Limnology and Oceanography, 27(2), 236-245.
  48. Brand, L. E. (1982). Persistent diel rhythms in the chlorophyll fluorescence of marine phytoplankton species. Marine Biology, 69(3), 253-262.
  49. Brand, L. E. (1989). Review of genetic variation in marine phytoplankton species and the ecological implications. Biological Oceanography, 6(5-6), 397-409.
  50. Brand, L. E. (1991). Minimum iron requirements of marine phytoplankton and the implications for the biogeochemical control of new production. Limnology and Oceanography, 36(8), 1756-1771.
  51. Brand, L. E. (1994). Physiological ecology of marine coccolithophores. Coccolithophores. Cambridge University Press, Cambridge, 13-37.
  52. Brand, L. E., Sunda, W. G., & Guillard, R. R. (1983). Limitation of marine phytoplankton reproductive rates by zinc, manganese, and iron. Limnology and oceanography, 28(6), 1182-1198.
  53. Brânzilă, M.,, & Chira, C. (2005). Microfossils assemblages from the Badenian/Sarmatian boundary in boreholes from the Moldavian Platform. Acta Paleontologica Romaniae, 5, 17-26.
  54. Bratbak, G., Heldal, M., Norland, S., & Thingstad, T. F. (1990). Viruses as partners in spring bloom microbial trophodynamics. Applied and Environmental Microbiology, 56(5), 1400-1405.
  55. Bratbak, G., Wilson, W., & Heldal, M. (1996). Viral control of Emiliania huxleyi blooms?. Journal of Marine Systems, 9(1), 75-81.
  56. Bricaud, A., & Morel, A. (1986). Light attenuation and scattering by phytoplanktonic cells: a theoretical modeling. Applied Optics, 25(4), 571-580.
  57. Brown, C. W., & Yoder, J. A. (1994). Coccolithophorid blooms in the global ocean. Journal of Geophysical Research-all series-, 99, 7467-7467.
  58. Brownlee, C., Davies, M., Nimer, N., Dong, L. F., & Merrett, M. J. (1995). Calcification, photosynthesis and intracellular regulation in Emiliania huxleyi. Bulletin -Institut Oceanographique Monaco -Numero Special-, 19-36.
  59. Brownlee, C., & Taylor, A. R. (2002). Algal calcification and silification. eLS.
  60. Buitenhuis, E. T., De Baar, H. J., & Veldhuis, M. J. (1999). Photosynthesis and calcification by Emiliania huxleyi (Prymnesiophyceae) as a function of inorganic carbon species. Journal of Phycology, 35(5), 949-959.
  61. Buitenhuis, E. T., Pangerc, T., Franklin, D. J., Le Quéré, C., & Malin, G. (2008). Growth rates of six coccolithophorid strains as a function of temperature. Limnology and Oceanography, 53(3), 1181-1185.
  62. Bukry, D. (1971). Cenozoic calcareous nannofossils from the Pacific Ocean. San Diego Society of Natural History.
  63. Bukry, D. (1973). Phytoplankton stratigraphy, deep sea drilling project leg 20, western Pacific Ocean. Heezen, BC, MacGregor, ID, et al., Init. Repts. DSDP,20, 307-317.
  64. Bourinet, E., Zamponi, G. W., Stea, A., Soong, T. W., Lewis, B. A., Jones, L. P., Yue, D. T., & Snutch, T. P. (1996). The α1E calcium channel exhibits permeation properties similar to low-voltage-activated calcium channels. The Journal of neuroscience, 16(16), 4983-4993.
  65. Buitenhuis, E. T., Wal, P., & Baar, H. J. (2001). Blooms of Emiliania huxleyi are sinks of atmospheric carbon dioxide: A field and mesocosm study derived simulation. Global Biogeochemical Cycles, 15(3), 577-587.
  66. Burkill, P. H., Archer, S. D., Robinson, C., Nightingale, P. D., Groom, S. B., Tarran, G. A., & Zubkov, M. V. (2002). Dimethyl sulphide biogeochemistry within a coccolithophore bloom (DISCO): an overview. Deep Sea Research Part II: Topical Studies in Oceanography, 49(15), 2863-2885.
  67. Burns, D. A. (1977). Phenotypes and dissolution morphotypes of the genus Gephyrocapsa Kamptner and Emiliania huxleyi (Lohmann). New Zealand journal of geology and geophysics, 20(1), 143-155.
  68. Busson, G., & Noel, D. (1991). Les nannoconidés, indicateurs environnementaux des océans et mers épicontinentales du Jurassique terminal et du Crétacé inférieur. Oceanologica Acta, 14(4), 333-356.
  69. Cadée, G. C. (1985). Macroaggregates of Emiliana-Huxleyi in Sediment Traps. Marine Ecology Progress Series, 24(1-2), 193-196.
  70. Cavalier-Smith, T., Allsopp, M. T. E. P., Häuber, M. M., Gothe, G., Chao, E. E., Couch, J. A., & Maier, U. G. (1996). Chromobiote phylogeny: the enigmatic alga Reticulosphaera japonensis is an aberrant haptophyte, not a heterokont. European Journal of Phycology, 31(3), 255-263.
  71. Charlson, R. J., Lovelock, J. E., Andreae, M. O., & Warren, S. G. (1987). Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate. Nature, 326(6114), 655-661.
  72. CLIMAP, P. M. (1976). The surface of the ice-age earth. Science (New York, NY), 191(4232), 1131.
  73. Cokacar, T., Kubilay, N., & Oguz, T. (2001). Structure of Emiliania huxleyi blooms in the Black Sea surface waters as detected by SeaWIFS imagery. Geophysical Research Letters, 28(24), 4607-4610.
  74. Colman, B., Huertas, I. E., Bhatti, S., & Dason, J. S. (2002). The diversity of inorganic carbon acquisition mechanisms in eukaryotic microalgae. Functional Plant Biology, 29(3), 261-270.
  75. Colmenero-Hidalgo, E., Flores, J. A., & Sierro, F. J. (2002). Biometry of Emiliania huxleyi and its biostratigraphic significance in the Eastern North Atlantic Ocean and Western Mediterranean Sea in the last 20 000 years. Marine Micropaleontology, 46(3), 247-263.
  76. Corstjens, P. L., Araki, Y., & González, E. L. (2001). A Coccolithophorid Calcifying Vesicle with a Vacuolar‐Type ATPase Proton Pump: Cloning and Immunolocalization of the V0 Subunit c. Journal of Phycology, 37(1), 71-78.
  77. Corstjens, P. L., Van Der Kooij, A., Linschooten, C., Brouwers, G. J., Westbroek, P., & Jong, E. W. (1998). GPA, A Calcium‐Binding Protein in the Coccolithophorid Emiliania Huxleyi (Prymnesiophyceae). Journal of phycology, 34(4), 622-630.
  78. Cortes, M. Y., & Bollmann, J. (2002). A new combination coccosphere of the heterococcolith species Coronosphaera mediterranea and the holococcolith species Calyptrolithophora hasleana. European Journal of Phycology, 37(01), 145-146.
  79. Crawford, D. W., & Purdie, D. A. (1997). Increase of PCO2 during blooms of Emiliania huxleyi: Theoretical considerations on the asymmetry between acquisition of HCO3‐and respiration of free CO2. Limnology and Oceanography, 42(2), 365-372.
  80. Crépineau, F., Roscoe, T., Kaas, R., Kloareg, B., & Boyen, C. (2000). Characterisation of complementary DNAs from the expressed sequence tag analysis of life cycle stages of Laminaria digitata (Phaeophyceae). Plant Molecular Biology, 43(4), 503-513.
  81. Cros, L., & Fortuño, J. M. (2002). Atlas of northwestern Mediterranean coccolithophores. Scientia Marina, 66(S1), 1-182.
  82. Cros, L., Kleijne, A., Zeltner, A., Billard, C., & Young, J. R. (2000). New examples of holococcolith–heterococcolith combination coccospheres and their implications for coccolithophorid biology. Marine Micropaleontology, 39(1), 1-34.
  83. De Jong, E. W., Bosch, L., Westbroek, P. (1976). Isolation and Characterizationof a Ca2 + -Binding Polysaccharide Associated with Coccoliths of Emiliania huxleyi (Lohmann) Kamptner. European Journal of Biochemistry 70, 611-621.
  84. Denman, K. L., & Gargett, A. E. (1983). Time and space scales of vertical mixing and advection of phytoplankton in the upper ocean. Limnology and Oceanography, 28(5), 801-815.
  85. Desikachary, T. V. (1957). Electron microscopy and algology. In Proceedings of the Indian Academy of Sciences, Section B (Vol. 46, No. 1, pp. 54-64). Indian Academy of Sciences.
  86. Dimiza, M. D., Triantaphyllou, M. V., & Krasakopoulou, E. (2011). Coccolithophores (calcareous nannoplankton) distribution in the surface waters of the western Cretan Straits (South Aegean Sea): productivity and relation with the circulation pattern. Hellenic Journal of Geosciences, 45, 55.
  87. Droop, M. R. (1955). Some new supra-littoral protista. Journal of the Marine Biological Association of the United Kingdom, 34(02), 233-245.
  88. Edvardsen, B., Eikrem, W., Green, J. C., Andersen, R. A., Moon-van der Staay, S. Y., & Medlin, L. K. (2000). Phylogenetic reconstructions of the Haptophyta inferred from 18S ribosomal DNA sequences and available morphological data. Phycologia, 39(1), 19-35.
  89. Egge, E. S., Eikrem, W., & Edvardsen, B. (2015). Deep‐branching Novel Lineages and High Diversity of Haptophytes in the Skagerrak (Norway) Uncovered by 454 Pyrosequencing. Journal of Eukaryotic Microbiology, 62(1), 121-140.
  90. Elzenga, J. T. M., Prins, H., & Stefels, J. (2000). The role of extracellular carbonic anhydrase activity in inorganic carbon utilization of Phaeocystis globosa (Prymnesiophyceae): A comparison with other marine algae using the isotopic disequilibrium technique. Limnology and Oceanography, 45(2), 372-380.
  91. Eppley, R. W., Rogers, J. N., & McCarthy, J. J. (1969). Half‐Saturation Constants for Uptake of Nitrate and Ammonium by Marine Phytoplankton. Limnology and oceanography, 14(6), 912-920.
  92. Erba, E. (2004). Calcareous nannofossils and Mesozoic oceanic anoxic events. Marine Micropaleontology, 52(1), 85-106.
  93. Erba, E. (2006). The first 150 million years history of calcareous nannoplankton: biosphere–geosphere interactions. Palaeogeography, Palaeoclimatology, Palaeoecology, 232(2), 237-250.
  94. Falkowski, P. G., & Raven, J. A. (1997). An introduction to photosynthesisin aquatic system. Aquatic Photosynthesis (Malden, MA, ed.). Blackwell Science, 1-32.
  95. Fernando, A. G. S., Peleo-Alampay, A. M., & Wiesner, M. G. (2007). Calcareous nannofossils in surface sediments of the eastern and western South China Sea. Marine Micropaleontology, 66(1), 1-26.
  96. Ferreira, J., Cachão, M., & González, R. (2008). Reworked calcareous nannofossils as ocean dynamic tracers: The Guadiana shelf case study (SW Iberia). Estuarine, Coastal and Shelf Science, 79(1), 59-70.
  97. Fisher, N. S., & Honjo, S. (1989). Intraspecific differences in temperature and salinity responses in the coccolithophore Emiliania huxleyi. Biological oceanography, 6(3-4), 355-361.
  98. Fichtinger-Schepman, A. M. J., Kamerling, J. P., Versluis, C., & Vliegenthart, J. F. (1981). Structural studies of the methylated, acidic polysaccharide associated with coccoliths of Emiliania huxleyi (Lohmann) Kamptner. Carbohydrate research, 93(1), 105-123.
  99. Flores, J. A., Sierro, F. J., Filippelli, G. M., Bárcena, M. Á., Pérez-Folgado, M., Vázquez, A., & Utrilla, R. (2005). Surface water dynamics and phytoplankton communities during deposition of cyclic late Messinian sapropel sequences in the western Mediterranean. Marine Micropaleontology, 56(1), 50-79.
  100. Fresnel, J., & Billard, C. (1991). Pleurochrysis placolithoides sp. nov.(Prymnesiophyceae), a new marine coccolithophorid with remarks on the status of cricolith-bearing species. British Phycological Journal, 26(1), 67-80.
  101. Fresnel, J., & Probert, I. (2005). The ultrastructure and life cycle of the coastal coccolithophorid Ochrosphaera neapolitana (Prymnesiophyceae). European Journal of Phycology, 40(1), 105-122.
  102. Fujiwara, S., Tsuzuki, M., Kawachi, M., Minaka, N., & Inouye, I. (2001). Molecular phylogeny of the haptophyta based on the rbcL gene and sequence variation in the spacer region of the RUBISCO operon. Journal of Phycology, 37(1), 121-129.
  103. Gaarder, K. R., & Hasle, G. R. (1971). Coccolithophorids of the Gulf of Mexico.Bulletin of Marine Science, 21(2), 519-544.
  104. Gale, A. S., Smith, A. B., Monks, N. E. A., Young, J. A., Howard, A., Wray, D. S., & Huggett, J. M. (2000). Marine biodiversity through the Late Cenomanian–Early Turonian: palaeoceanographic controls and sequence stratigraphic biases. Journal of the Geological Society, 157(4), 745-757.
  105. Gattuso, J. P., Reynaud‐Vaganay, S., Furla, P., Romaine‐Lioud, S., Jaubert, J., Bourge, I., & Frankignoulle, M. (2000). Calcification does not stimulate photosynthesis in the zooxanthellate scleractinian coral Stylophora pistillata. Limnology and Oceanography, 45(1), 246-250.
  106. Gardin, S., Krystyn, L., Richoz, S., Bartolini, A., & Galbrun, B. (2012). Where and when the earliest coccolithophores?. Lethaia, 45(4), 507-523.
  107. Geisen, M., Billard, C., Broerse, A., Cros, L., Probert, I., & Young, J. (2002). Life-cycle associations involving pairs of holococcolithophorid species: intraspecific variation or cryptic speciation?. European Journal of Phycology, 37(4), 531-550.
  108. Geisen, M., Young, J. R., Probert, I., Sáez, A. G., Baumann, K. H., Sprengel, C., Bollmann, J., Cros, L., de Vargas, C., & Medlin, L. K. (2004). Species level variation in coccolithophores. In Coccolithophores (pp. 327-366). Springer Berlin Heidelberg.
  109. Gibbs, S. J., Bralower, T. J., Bown, P. R., Zachos, J. C., & Bybell, L. M. (2006). Shelf and open-ocean calcareous phytoplankton assemblages across the Paleocene-Eocene Thermal Maximum: Implications for global productivity gradients. Geology, 34(4), 233-236.
  110. Gibbs, S., Shackleton, N., & Young, J. (2004). Orbitally forced climate signals in mid-Pliocene nannofossil assemblages. Marine Micropaleontology, 51(1), 39-56.
  111. Giunta, S., Morigi, C., Negri, A., Guichard, F., & Lericolais, G. (2007). Holocene biostratigraphy and paleoenvironmental changes in the Black Sea based on calcareous nannoplankton. Marine Micropaleontology, 63(1), 91-110.
  112. Goes, J. I., & Devassy, V. P. (1983). Phytoplankton organisms collected during the First Indian Antarctic Expedition. Sci Rep First Indian Exped Antarct Tech Publ, 1, 198-201.
  113. Green, J. C., Course, P. A., & Tarran, G. A. (1996). The life-cycle of Emiliania huxleyi: A brief review and a study of relative ploidy levels analysed by flow cytometry. Journal of Marine Systems, 9(1), 33-44.
  114. Green, J. C. (1980). The fine structure of Pavlova pinguis Green and a preliminary survey of the order Pavlovales (Prymnesiophyceae). British Phycological Journal, 15(2), 151-191.
  115. Green, J. C., & Hori, T. (1986). The ultrastructure of the flagellar root system of Imantonia rotunda (Prymnesiophyceae). British Phycological Journal, 21(1), 5-18.
  116. Gregg, W. W., & Casey, N. W. (2007). Modeling coccolithophores in the global oceans. Deep Sea Research Part II: Topical Studies in Oceanography, 54(5), 447-477.
  117. Guerreiro, C., Oliveira, A., De Stigter, H., Cachão, M., Sá, C., Borges, C., … & Rodrigues, A. (2013). Late winter coccolithophore bloom off central Portugal in response to river discharge and upwelling. Continental Shelf Research, 59, 65-83.
  118. Guerreiro, C., de Stigter, H., Cachão, M., Oliveira, A., & Rodrigues, A. (2015). Coccoliths from recent sediments of the Central Portuguese Margin: taphonomical and ecological inferences. Marine Micropaleontology, 114, 55-68.
  119. Haeckel, E. H. (1866). Generelle Morphologie der Organismen allgemeine Grundzuge der organischen Formen-Wissenschaft, mechanisch begrundet durch die von Charles Darwin reformirte Descendenz-Theorie von Ernst Haeckel: Allgemeine Entwickelungsgeschichte der Organismen kritische Grundzuge der mechanischen Wissenschaft von den entstehenden Formen der Organismen, begrundet durch die Descendenz-Theorie (Vol. 2). Verlag von Georg Reimer.
  120. Haeckel, E. H. P. A. (1894). Systematische Phylogenie der Protisten und Pflanzen: Erster Theil des Entwuefs einer systematischen Stammes. geschichte. G. Reimer.
  121. Hagino, K., Bendif, E. M., Young, J. R., Kogame, K., Probert, I., Takano, Y., Horiguchi, T., de Vargas, C. & Okada, H. (2011). New Evidence for Morphological and Genetic Variation in the Cosmopolitan Coccolithophore Emiliania Huxleyi (Prymnesiophyceae) from the Cox1b-ATP4 Genes1. Journal of Phycology, 47(5), 1164-1176.
  122. Hagino, K., & Okada, H. (2004). Floral response of coccolithophores to progressive oligotrophication in the South Equatorial Current, Pacific Ocean. Global Environmental Change in the Ocean and on Land. Terrapub, 121-132.
  123. Hagino, K., & Okada, H. (2006). Intra-and infra-specific morphological variation in selected coccolithophore species in the equatorial and subequatorial Pacific Ocean. Marine Micropaleontology, 58(3), 184-206.
  124. Hagino, K., Okada, H., & Matsuoka, H. (2005). Coccolithophore assemblages and morphotypes of Emiliania huxleyi in the boundary zone between the cold Oyashio and warm Kuroshio currents off the coast of Japan. Marine Micropaleontology, 55(1), 19-47.
  125. Harris, R. P. (1994). Zooplankton grazing on the coccolithophore Emiliania huxleyi and its role in inorganic carbon flux. Marine Biology, 119(3), 431-439.
  126. Harris, R. P. (1996). Coccolithophorid dynamics: the European Emiliania huxleyi programme, EHUX. Journal of marine systems, 9(1), 1-11.
  127. Harvey, W. R. (1992). Physiology of v-ATPases. Journal of Experimental Biology, 1-1.
  128. Hawkins, E. K., & Lee, J. J. (2001). Architecture of the Golgi apparatus of a scale-forming alga: biogenesis and transport of scales. Protoplasma, 216(3-4), 227-238.
  129. Hay, B. J., & Honjo, S. (1989). Particle deposition in the present and Holocene Black Sea. Oceanography, 2(1), 26-31.
  130. Heimdal, B. R. (1982). Validation of the names of some species of Zygosphaera Kamptner. International Nannoplankton Association Newsletter, 4, 52-56.
  131. Heimdal, B. R., & Saugestad, A. H. (2002). Light microscope studies on coccolithophorids from the western Mediterranean Sea, with notes on combination cells of Daktylethra pirus and Syracosphaera pulchra. Plant Biosystems – An International Journal Dealing with all Aspects of Plant Biology, 136(1), 3-27.
  132. Henriksen, K., Young, J. R., Bown, P. R., & Stipp, S. L. S. (2004). Coccolith biomineralisation studied with atomic force microscopy. Palaeontology, 47(3), 725-743.
  133. Henry, M., Karez, C. S., Romeo, M., Gnassia-Barelli, M., Fresnel, J., & Puiseux-Dao, S. (1991). Ultrastructural study and calcium and cadmium localization in the marine coccolithophorid Cricosphaera elongata. Marine Biology, 111(1), 167-173.
  134. Hernández, I., Niell, F. X., & Whitton, B. A. (2002). Phosphatase activity of benthic marine algae. An overview. Journal of Applied Phycology, 14(6), 475-487.
  135. Herrle, J. O. (2003). Reconstructing nutricline dynamics of mid-Cretaceous oceans: evidence from calcareous nannofossils from the Niveau Paquier black shale (SE France). Marine Micropaleontology, 47(3), 307-321.
  136. Holcová, K. (2012). Quantitative calcareous nannoplankton biostratigraphy of the Oligocene/Miocene boundary interval in the northern part of the Buda Basin (Central Paratethys). Geological Quarterly, 49(3), 260-274.
  137. Holligan, P. M., Aarup, T., & Groom, S. B. (1989). The North Sea: satellite colour atlas. Continental Shelf Research, 9(8), 667-765.
  138. Honjo, S. (1982). Seasonality and interaction of biogenic and lithogenic particulate flux at the Panama Basin. Science, 218(4575), 883-884.
  139. Hoppe, C. J. M., Langer, G., & Rost, B. (2011). Emiliania huxleyi shows identical responses to elevated pCO 2 in TA and DIC manipulations. Journal of Experimental Marine Biology and Ecology, 406(1), 54-62.
  140. Hori, T., & Inouye, I. (1981). The ultrastructure of mitosis in Cricosphaera roscoffensis var. haptonemofera (Prymnesiophyceae). Protoplasma, 106(1-2), 121-135.
  141. Houdan, A., Billard, C., Marie, D., Not, F., Sáez, A. G., Young, J. R., & Probert, I. (2004). Holococcolithophore‐heterococcolithophore (Haptophyta) life cycles: Flow cytometric analysis of relative ploidy levels. Systematics and Biodiversity, 1(4), 453-465.
  142. Hulburt, E. M. (1962). Phytoplankton in the Southwestern Sargasso Sea and North Equatorial Current, February 1961. Limnology and Oceanography, 7(3), 307-315.
  143. Hulburt, E. M. (1963). Distribution of phytoplankton in coastal waters of Venezuela. Ecology, 169-171.
  144. Hulburt, E. M., & Rodman, J. (1963). Distribution of Phytoplankton Species with Respect to Salinity between the coast of Southern New England and Bermuda. Limnology and Oceanography, 8(2), 263-269.
  145. Hulburt, E. M. (1964). Succession and diversity in the plankton flora of the western North Atlantic. Bulletin of Marine Science, 14(1), 33-44.
  146. Hulburt, E. M. (1968). Phytoplankton observations in the western Caribbean Sea. Bulletin of Marine Science, 18(2), 388-399.
  147. Hulburt, E. M. (1970). Competition for Nutrients by Marine Phytoplankton in Oceanic, Castal, and Estuarine Regions. Ecology, 475-484.
  148. Hulburt, E. M. (1976). Limitation of phytoplankton species in the ocean off western Africa. Limnology and Oceanography, 21(2), 193-211.
  149. Hulburt, E. M. (1983). Quasi K-selected species, equivalence, and the oceanic coccolithophorid plankton. Bulletin of Marine Science, 33(2), 197-212.
  150. Hulburt, E. M., & MacKenzie, R. S. (1971). Distribution of phytoplankton species at the western margin of the North Atlantic Ocean. Bulletin of Marine Science, 21(2), 603-612.
  151. Huxley, T. H. (1868). On some organisms living at great depths in the North Atlantic Ocean. na.
  152. Iglesias‐Rodríguez, M. D., Brown, C. W., Doney, S. C., Kleypas, J., Kolber, D., Kolber, Z., Hayes, P. K., & Falkowski, P. G. (2002). Representing key phytoplankton functional groups in ocean carbon cycle models: Coccolithophorids. Global Biogeochemical Cycles, 16(4), 47-1.
  153. Inouye, I., & Pienaar, R. N. (1984). New observations on the coccolithophorid Umbilicosphaera sibogae var. foliosa (Prymnesiophyceae) with reference to cell covering, cell structure and flagellar apparatus. British Phycological Journal, 19(4), 357-369.
  154. Inouye, I., & Pienaar, R. N. (1985). Ultrastructure of the flagellar apparatus in Pleurochrysis (class Prymnesiophyceae). Protoplasma, 125(1-2), 24-35.
  155. Inouye, I., & Pienaar, R. N. (1988). Light and electron microscope observations of the type species of Syracosphaera, S. pulchra (Prymnesiophyceae). British Phycological Journal, 23(3), 205-217.
  156. Inouye, I., & Chihara, M. (1979). Life history and taxonomy of Cricosphaera roscoffensis var. haptonemofera, var. nov. (class prymnesiophyceae) from the Pacific. The botanical magazine= Shokubutsu-gaku-zasshi, 92(1), 75-87.
  157. Inouye, I., & Chihara, M. (1983). Ultrastructure and taxonomy ofJomonlithus littoralis gen. et sp. nov.(Class prymnesiophyceae), a coccolithophorid from the Northwest Pacific. The botanical magazine= Shokubutsu-gaku-zasshi, 96(4), 365-376.
  158. Inouye, I., & Hori, T. (1991). High-speed video analysis of the flagellar beat and swimming patterns of algae: possible evolutionary trends in green algae. Protoplasma, 164(1-3), 54-69.
  159. Israel, A. A., & Gonzalez, E. L. (1997). Photosynthesis and inorganic carbon utilization in Pleurochrysis sp.(Haptophyta) a coccolithophorid alga. Oceanographic Literature Review, 1(44), 30.
  160. Ivanov, M., & Stoykova, K. (1994). Cretaceous/Tertiary boundary in the area of Bjala, Eastern Bulgaria-biostratigraphical results. Geologica Balcanica, 24(6), 3-23.
  161. Jafar, S. A. (1983). Significance of Late Triassic calcareous nannoplankton from Austria and southern Germany. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 166(2), 218-259.
  162. Jeffrey, S. W., & Allen, M. B. (1964). Pigments, Growth and Photosynthesis in Cultures of Two Chrysomonads, Coccolithus huxleyi and a Hymenomonassp. Journal of general microbiology, 36(2), 277-288.
  163. Jordan, R. W., Broerse, A. T. C., Hagino, K., Kinkel, H., Sprengel, C., Takahashi, K., & Young, J. R. (2000). Taxon lists for studies of modern nannoplankton. Marine Micropaleontology, 39(1), 309-314.
  164. Jordan, R. W., & Chamberlain, A. H. L. (1997). Biodiversity among haptophyte algae. Biodiversity & Conservation, 6(1), 131-152.
  165. Jordan, R. W., Cros, L., & Young, J. R. (2004). A revised classification scheme for living haptophytes. Micropaleontology, 55-79.
  166. Jordan, R. W., & Kleijne, A. (1994). A classification system for living coccolithophores. Coccolithophores. Cambridge University Press, Cambridge, 83-105.
  167. Jordan, R. W., Knappertsbusch, M., Simpson, W. R., & Chamberlain, A. H. L. (1991). Turrilithus latericioides gen. et sp. nov., a new coccolithophorid from the deep photic zone. British Phycological Journal, 26(2), 175-183.
  168. Jordan, R. W., & Winter, A. (2000). Assemblages of coccolithophorids and other living microplankton off the coast of Puerto Rico during January–May 1995. Marine Micropaleontology, 39(1), 113-130.
  169. Kawachi, M., & Inouye, I. (1994). Observations on the flagellar apparatus of a coccolithophorid, Cruciplacolithus neohelis (Prymnesiophyceae). Journal of Plant Research, 107(1), 53-62.
  170. Keller, M. D. (1989). Dimethyl sulfide production and marine phytoplankton: the importance of species composition and cell size. Biological Oceanography, 6(5-6), 375-382.
  171. Kilham, P., & Hecky, R. E. (1988). Comparative ecology of marine and freshwater phytoplankton. Limnology and Oceanography, 33(4part2), 776-795.
  172. Kimor, B., & Wood, E. J. F. (1975). A plankton study in the eastern Mediterranean Sea. Marine biology, 29(4), 321-333.
  173. Kinkel, H., Baumann, K. H., & Cepek, M. (2000). Coccolithophores in the equatorial Atlantic Ocean: response to seasonal and Late Quaternary surface water variability. Marine Micropaleontology, 39(1), 87-112.
  174. Klaveness, D. (1972). Coccolithus huxleyi (Lohmann) Kamptner II. The flagellate cell, aberrant cell types, vegetative propagation and life cycles. British Phycological Journal, 7(3), 309-318.
  175. Klaveness, D. (1973). The microanatomy of Calyptrosphaera sphaeroidea, with some supplementary observations on the motile stage of Coccolithus pelagicus. Norwegian Journal of Botany, 20(2-3), 151-162.
  176. Klaveness, D., & Paasche, E. (1971). Two different Coccolithus huxleyi cell types incapable of coccolith formation. Archives of Microbiology, 75(4), 382-385.
  177. Kleijne, A. (1992). Extant Rhabdosphaeraceae (coccolithophorids, class Prymnesiophyceae) from the Indian Ocean, Red Sea, Mediterranean Sea and North Atlantic Ocean (No. 100-101). Leiden: Nationaal Natuurhistorisch Museum.
  178. Kleijne, A., Jordan, R. W., & Chamberlain, A. H. L. (1991). Flosculosphaera calceolariopsis gen. et sp. nov. and F. sacculus sp. nov., new coccolithophorids (Prymnesiophyceae) from the NE Atlantic. British Phycological Journal, 26(2), 185-194.
  179. Kuenzler, E. J., & Perras, J. P. (1965). Phosphatases of marine algae. The Biological Bulletin, 128(2), 271-284.
  180. Laguna, R., Romo, J., Read, B. A., & Wahlund, T. M. (2001). Induction of phase variation events in the life cycle of the marine coccolithophorid Emiliania huxleyi. Applied and environmental microbiology, 67(9), 3824-3831.
  181. Lamolda, M. A., Melinte, M. C., & Kaiho, K. (2005). Nannofloral extinction and survivorship across the K/T boundary at Caravaca, southeastern Spain. Palaeogeography, Palaeoclimatology, Palaeoecology, 224(1), 27-52.
  182. Leadbeater, B. S. C. (1970). Preliminary observations on differences of scale morphology at various stages in the life cycle of ‘Apistonema-Syracosphaera’sensu von Stosch. British phycological journal, 5(1), 57-69.
  183. Lecourt, M., Muggli, D. L., & Harrison, P. J. (1996). Comparison of Growth and Sinking Rates of Non‐Coccolith‐ and Coccolith‐Forming Strains of Emiliania Huxleyi (Prymnesiophyceae) Grown Under Different Irradiances and Nitrogen Sources. Journal of Phycology, 32(1), 17-21.
  184. Lees, J. A. (2008). The calcareous nannofossil record across the Late Cretaceous Turonian/Coniacian boundary, including new data from Germany, Poland, the Czech Republic and England. Cretaceous Research, 29(1), 40-64.
  185. Lees, J. A., Bown, P. R., Young, J. R., & Riding, J. B. (2004). Evidence for annual records of phytoplankton productivity in the Kimmeridge Clay Formation coccolith stone bands (Upper Jurassic, Dorset, UK). Marine Micropaleontology, 52(1), 29-49.
  186. Leonardos, N., Read, B., Thake, B., & Young, J. R. (2009). No mechanistic dependence of photosynthesis on calcification in the Coccolithophorid Emiliania Huxleyi (Haptophyta). Journal of Phycology, 45(5), 1046-1051.
  187. Loeblich, A. R. & Tappan, H. (1963). Type fixation and validation of certain calcareous narmoplankton genera. Proceedings of the Biological Society of Washington, 76, 191-196.
  188. Lohbeck, K. T., Riebesell, U., & Reusch, T. B. (2014). Gene expression changes in the coccolithophore Emiliania huxleyi after 500 generations of selection to ocean acidification. Proceedings of the Royal Society of London B: Biological Sciences, 281(1786), 20140003.
  189. Mackinder, L. (2012). The Mechanisms of Calcification in Coccolithophores-The molecular basis of calcium and inorganic carbon transport in Emiliania huxleyi (Doctoral dissertation, Kiel, Christian-Albrechts-Universität, Diss., 2012).
  190. Manton, I. (1964). Further observations on the fine structure of the haptonema in Prymnesium parvum. Archiv für Mikrobiologie, 49(4), 315-330.
  191. Manton, I. (1967). Further observations on the fine structure of Chrysochromulina chiton with special reference to the haptonema, ‘peculiar’ Golgi structure and scale production. Journal of cell science, 2(2), 265-272.
  192. Manton, I., & Leedale, G. F. (1963). Observations on the micro-anatomy of Crystallolithus hyalinus Gaarder and Markali. Archiv für Mikrobiologie, 47(2), 115-136.
  193. Manton, I., & Oates, K. (1975). Fine-structural observations on Papposphaera Tangen from the southern hemisphere and on Pappomonas gen. nov. from South Africa and Greenland. British Phycological Journal, 10(1), 93-109.
  194. Manton, I., & Oates, K. (1980). Polycrater galapagensis gen. et sp. nov., a putative coccolithophorid from the Galapagos Islands with an unusual aragonitic periplast. British Phycological Journal, 15(1), 95-103.
  195. Manton, I., & Sutherland, J. (1975). Further observations on the genus Pappomonas Manton et Oates with special reference to P. virgulosa sp. nov. from West Greenland. British Phycological Journal, 10(4), 377-385.
  196. Manton, I., Sutherland, J., & McCully, M. (1976). Fine structural observations on coccolithophorids from South Alaska in the genera Papposphaera Tangen and Pappomonas Manton and Oates. British Phycological Journal, 11(3), 225-238.
  197. Margalef, R. (1967). The food web in the pelagic environment. Helgoländer wissenschaftliche Meeresuntersuchungen, 15(1-4), 548-559.
  198. Marlowe, I. T., Brassell, S. C., Eglinton, G., & Green, J. C. (1990). Long-chain alkenones and alkyl alkenoates and the fossil coccolith record of marine sediments. Chemical Geology, 88(3), 349-375.
  199. Marlowe, I. T., Green, J. C., Neal, A. C., Brassell, S. C., Eglinton, G., & Course, P. A. (1984). Long chain (n-C37–C39) alkenones in the Prymnesiophyceae. Distribution of alkenones and other lipids and their taxonomic significance. British Phycological Journal, 19(3), 203-216.
  200. Marsh, M. E. (1994). Polyanion-mediated mineralization—assembly and reorganization of acidic polysaccharides in the Golgi system of a coccolithophorid alga during mineral deposition. Protoplasma, 177(3-4), 108-122.
  201. Marsh, M. E. (1996). Polyanion-mediated mineralization—a kinetic analysis of the calcium-carrier hypothesis in the phytoflagellatePleurochrysis carterae. Protoplasma, 190(3-4), 181-188.
  202. Marsh, M. E. (1999). Coccolith crystals of Pleurochrysis carterae: Crystallographic faces, organization, and development. Protoplasma, 207(1-2), 54-66.
  203. Marsh, M. E., & Dickinson, D. P. (1997). Polyanion-mediated mineralization—mineralization in coccolithophore (Pleurochrysis carterae) variants which do not express PS2, the most abundant and acidic mineral-associated polyanion in wild-type cells. Protoplasma, 199(1-2), 9-17.
  204. Margalef, R. (1978). Life-forms of phytoplankton as survival alternatives in an unstable environment. Oceanologica acta, 1(4), 493-509.
  205. Marsh, M. E. (2003). Regulation of CaCO 3 formation in coccolithophores.Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 136(4), 743-754.
  206. Marshall, H. G. (1966). Observations on the Vertical Distribution of Coccolithophores in the Northwestern Sargasso Sea. Limnology and Oceanography, 11(3), 432-435.
  207. Marshall, H. G. (1968). Coccolithophores in the Northwest Sargasso Sea. Limnology and Oceanography, 13(2), 370-376.
  208. Marshall, H. G. (1976). Phytoplankton distribution along the eastern coast of the USA. I. Phytoplankton composition. Marine Biology, 38(1), 81-89.
  209. Marshall, H. G. (1978). Phytoplankton distribution along the eastern coast of the USA. Part II. Seasonal assemblages north of Cape Hatteras, North Carolina. Marine Biology, 45(3), 203-208.
  210. Massana, R., Gobet, A., Audic, S., Bass, D., Bittner, L., Boutte, C., … & Vargas, C. (2015). Marine protist diversity in European coastal waters and sediments as revealed by high‐throughput sequencing. Environmental microbiology.
  211. McConnaughey, T. A., & Whelan, J. F. (1997). Calcification generates protons for nutrient and bicarbonate uptake. Earth-Science Reviews, 42(1), 95-117.
  212. Medlin, L. K., Barker, G. L. A., Campbell, L., Green, J. C., Hayes, P. K., Marie, D., Wrieden, S., & Vaulot, D. (1996). Genetic characterisation of Emiliania huxleyi (Haptophyta). Journal of Marine Systems, 9(1), 13-31.
  213. Melinte, M. C. (2004). Calcareous nannoplankton, a tool to assign environmental changes. GEO-ECO-MARINA 9-10.
  214. Melinte, M., & Mutterlose, J. (2001). A Valanginian (Early Cretaceous)‘boreal nannoplankton excursion’in sections from Romania. Marine Micropaleontology, 43(1), 1-25.
  215. Merrick, P. J., & Leadbeater, B. S. C. (1979). Release and settlement of swarmers in Pleurochrysis scherffelii Pringsheim. British Phycological Journal, 14(4), 339-347.
  216. Mihnea, P. E. (1997). Major shifts in the phytoplankton community (1980-1994) in the Romanian Black Sea. Oceanolica Acta, 20(1), 119-129.
  217. Mitchell-Innes, B. A., & Winter, A. (1987). Coccolithophores: a major phytoplankton component in mature upwelled waters off the Cape Peninsula, South Africa in March, 1983. Marine Biology, 95(1), 25-30.
  218. Moestrup, Ø., & Thomsen, H. A. (1986). Ultrastructure and reconstruction of the flagellar apparatus in Chrysochromulina apheles sp. nov.(Prymnesiophyceae= Haptophyceae). Canadian Journal of Botany, 64(3), 593-610.
  219. Molfino, B., & McIntyre, A. (1990). Precessional forcing of nutricline dynamics in the Equatorial Atlantic. Science (Washington), 249(4970), 766-769.
  220. Moore, T. S., Dowell, M. D., & Franz, B. A. (2012). Detection of coccolithophore blooms in ocean color satellite imagery: A generalized approach for use with multiple sensors. Remote Sensing of Environment, 117, 249-263.
  221. Morel, F. M., Cox, E. H., Kraepiel, A. M., Lane, T. W., Milligan, A. J., Schaperdoth, I., Reinfelder, J. R., & Tortell, P. D. (2002). Acquisition of inorganic carbon by the marine diatom Thalassiosira weissflogii. Functional plant biology, 29(3), 301-308.
  222. Murray, G., & Blackman, V. H. (1898). On the nature of the coccospheres and rhabdospheres. Philosophical Transactions of the Royal Society of London. Series B, Containing Papers of a Biological Character, 427-441.
  223. Mutterlose, J., & Bornemann, A. (2000). Distribution and facies patterns of Lower Cretaceous sediments in northern Germany: a review. Cretaceous Research, 21(6), 733-759.
  224. Mutterlose, J., & Kessels, K. (2000). Early Cretaceous calcareous nannofossils from high latitudes: implications for palaeobiogeography and palaeoclimate. Palaeogeography, Palaeoclimatology, Palaeoecology, 160(3), 347-372.
  225. Mutterlose, J., & Ruffell, A. (1999). Milankovitch-scale palaeoclimate changes in pale–dark bedding rhythms from the Early Cretaceous (Hauterivian and Barremian) of eastern England and northern Germany. Palaeogeography, Palaeoclimatology, Palaeoecology, 154(3), 133-160.
  226. Nair, A., Sathyendranath, S., Platt, T., Morales, J., Stuart, V., Forget, M. H., Devred, E., & Bouman, H. (2008). Remote sensing of phytoplankton functional types.Remote Sensing of Environment, 112(8), 3366-3375.
  227. Nanninga, H. J., & Tyrrell, T. (1996). Importance of light for the formation of algal blooms by Emiliania huxleyi. Marine ecology progress series. Oldendorf, 136(1), 195-203.
  228. Negri, A., & Giunta, S. (2001). Calcareous nannofossil paleoecology in the sapropel S1 of the eastern Ionian sea: paleoceanographic implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 169(1), 101-112.
  229. Negri, A., & Villa, G. (2000). Calcareous nannofossil biostratigraphy, biochronology and paleoecology at the Tortonian/Messinian boundary of the Faneromeni section (Crete). Palaeogeography, Palaeoclimatology, Palaeoecology, 156(3), 195-209.
  230. Nejstgaard, J. C., Gismervikz, I., & Solberg, P. T. (1997). Feeding and reproduction by Calanus finmarchicus, and microzooplankton grazing during mesocosm. Marine Ecology Progress Series, 147, 197-217.
  231. Nielsen, M. V. (1998). Growth, dark respiration and photosynthetic parameters of the coccolithophorid Emiliania huxleyi (Prymnesiophyceae) acclimated to different day length-irradiance combinations. Oceanographic Literature Review, 3(45), 501.
  232. Nimer, N. A., Guan, Q., & Merrett, M. J. (1994). Extra‐and intra‐cellular carbonic anhydrase in relation to culture age in a high‐calcifying strain of Emiliania huxleyi Lohmann. New Phytologist, 126(4), 601-607.
  233. Nimer, N. A., Ling, M. X., Brownlee, C., & Merrett, M. J. (1999). Inorganic carbon limitation, exofacial carbonic anhydrase activity, and plasma membrane redox activity in marine phytoplankton species. Journal of Phycology, 35(6), 1200-1205.
  234. Nimer, N. A., & Merrett, M. J. (1992). Calcification and utilization of inorganic carbon by the coccolithophorid Emiliania huxleyi Lohmann. New Phytologist, 121(2), 173-177.
  235. Nimer, N. A., & Merrett, M. J. (1993). Calcification rate in Emiliania huxleyi Lohmann in response to light, nitrate and availability of inorganic carbon. New Phytologist, 123(4), 673-677.
  236. Nimer, N. A., Merrett, M. J., & Brownlee, C. (1996). Inorganic Carbon Transport in Relation to Culture Age and Inorganic Carbon Concentration in a High‐Calcifying Strain of Emiliania Huxleyi (Prymnesiophyceae). Journal of Phycology, 32(5), 813-818.
  237. Nishida, S. (1986). Nannoplankton flora in the Southern Ocean, with special reference to siliceous varieties. Memoirs of National Institute of Polar Research. Special issue, 40, 56-68.
  238. Okada, H., & Honjo, S. (1975). Distribution of coccolithophores in marginal seas along the western Pacific Ocean and in the Red Sea. Marine Biology, 31(3), 271-285.
  239. Okada, H., & McIntyre, A. (1979). Seasonal distribution of modern coccolithophores in the western North Atlantic Ocean. Marine Biology, 54(4), 319-328.
  240. Paasche, E. (1960). Phytoplankton distribution in the Norwegian Sea in June, 1954, related to hydrography and compared with primary production data.
  241. Paasche, E. (1969). Light-dependent coccolith formation in the two forms of Coccolithus pelagicus – With Remarks on the 14C Zero-Thickness Counting Efficiency of Coccolithophorids. Archiv für Mikrobiologie, 67(2), 199-208.
  242. Paasche, E., & Klaveness, D. (1970). A physiological comparison of coccolith-forming and naked cells of Coccolithus huxleyi. Archiv für Mikrobiologie, 73(2), 143-152.
  243. Parke, M. (1953). A preliminary check-list of British marine algae. Journal of the Marine Biological Association of the United Kingdom, 32(02), 497-520.
  244. Parke, M., & Dixon, P. S. (1964). A revised check-list of British marine algae.Journal of the Marine Biological Association of the United Kingdom, 44(02), 499-542.
  245. Parke, M., Manton, I., & Clarke, B. (1959). Studies on marine flagellates. V. Morphology and microanatomy of Chrysochromulina strobilus sp. nov. Journal of the Marine Biological Association of the United Kingdom, 38(01), 169-188.
  246. Parke, M., & Manton, I. (1962). Studies on marine flagellates: VI. Chrysochromulina pringsheimii sp. nov. Journal of the Marine Biological Association of the United Kingdom, 42(02), 391-404.
  247. Pasciak, W. J., & Gavis, J. (1974). Transport limitation of nutrient uptake in phytoplankton. Limnology and Oceanography, 19(6), 881-888.
  248. Pelejero, C., Calvo, E., & Hoegh-Guldberg, O. (2010). Paleo-perspectives on ocean acidification. Trends in Ecology & Evolution, 25(6), 332-344.
  249. Pérez, V., Fernández, E., Marañón, E., Morán, X. A. G., & Zubkov, M. V. (2006). Vertical distribution of phytoplankton biomass, production and growth in the Atlantic subtropical gyres. Deep Sea Research Part I: Oceanographic Research Papers, 53(10), 1616-1634.
  250. Pienaar, R. N. (1994). Ultrastructure and calcification of coccolithophores. Coccolithophores. Cambridge University Press, Cambridge, 13-37.
  251. Probert, I., Fresnel, J., Billard, C., Geisen, M., & Young, J. R. (2007). Light and Electron Microscope Observations of Algirosphaera Robusta (Prymnesiophyceae). Journal of Phycology, 43(2), 319-332.
  252. Prospero, J. M., Savoie, D. L., Saltzman, E. S., & Larsen, R. (1991). Impact of oceanic sources of biogenic sulphur on sulphate aerosol concentrations at Mawson, Antarctica.
  253. Pujos, A. (1988). Spatio-temporal distribution of some Quaternary coccoliths.Oceanologica acta, 11(1), 65-77.
  254. Ramsfjell, E. (1960). Phytoplankton distribution in the Norwegian Sea in June, 1952 and 1953.
  255. Raven, J. A. (2010). Inorganic carbon acquisition by eukaryotic algae: four current questions. Photosynthesis research, 106(1-2), 123-134.
  256. Raven, J. (1997). Putting the C in phycology. European Journal of Phycology, 32(4), 319-333.
  257. Rayns, D. G. (1962). Alternation of generations in a coccolithophorid, Cricosphaera carterae (Braarud & Fagerl.) Braarud. Journal of the Marine Biological Association of the United Kingdom, 42(03), 481-484.
  258. Reid, F. M. H., Stewart, E., Eppley, R. W., & Goodman, D. (1978). Spatial distribution of phytoplankton species in chlorophyll maximum layers off southern California. Limnology and Oceanography, 23(2), 219-226.
  259. Reifel, K. M., McCoy, M. P., Tiffany, M. A., Rocke, T. E., Trees, C. C., Barlow, S. B., … & Hurlbert, S. H. (2001). Pleurochrysis pseudoroscoffensis (Prymnesiophyceae) blooms on the surface of the Salton Sea, California. Hydrobiologia, 466(1-3), 177-185.
  260. Rickaby, R. E. M., Schrag, D. P., Zondervan, I., & Riebesell, U. (2002). Growth rate dependence of Sr incorporation during calcification of Emiliania huxleyi. Global Biogeochemical Cycles, 16(1), 6-1.
  261. Ridgwell, A., Schmidt, D. N., Turley, C., Brownlee, C., Maldonado, M. T., Tortell, P., & Young, J. R. (2009). From laboratory manipulations to Earth system models: predicting pelagic calcification and its consequences. Biogeosciences Discussions, 6(2), 3455.
  262. Ridgwell, A., Schmidt, D. N., Turley, C., Brownlee, C., Maldonado, M. T., Tortell, P., & Young, J. R. (2009). From laboratory manipulations to Earth system models: scaling calcification impacts of ocean acidification. Biogeosciences, 6(11), 2611-2623.
  263. Riebesell, U., Revill, A. T., Holdsworth, D. G., & Volkman, J. K. (2000). The effects of varying CO 2 concentration on lipid composition and carbon isotope fractionation in Emiliania huxleyi. Geochimica et Cosmochimica Acta, 64(24), 4179-4192.
  264. Riegman, R., Stolte, W., & Noordeloos, A. A. M. (1998). A model system approach to biological climate forcing: the example of Emiliania huxleyi. NIOZ rapport.
  265. Riegman, R., Stolte, W., Noordeloos, A. A., & Slezak, D. (2000). Nutrient uptake and alkaline phosphatase (EC 3: 1: 3: 1) activity of Emiliania huxleyi (Prymnesiophyceae) during growth under N and P limitation in continuous cultures. Journal of Phycology, 36(1), 87-96.
  266. Rost, B., & Riebesell, U. (2004). Coccolithophores and the biological pump: responses to environmental changes. In Coccolithophores (pp. 99-125). Springer Berlin Heidelberg.
  267. Rost, B., Zondervan, I., & Riebesell, U. (2002). Light-dependent carbon isotope fractionation in the coccolithophorid Emiliania huxleyi. Limnology and Oceanography, 47, 120-128.
  268. Roth, P. H. (1978). Cretaceous Nannoplankton Biostratigraphy and Oceanography of the Northwestern Atlantic Ocean., 04.09.2015.
  269. Roth, P. H. (1994). Distribution of coccoliths in oceanic sediments. Coccolithophores. Cambridge University Press, Cambridge, 199-218.
  270. Rowson, J. D., Leadbeater, B. S., & Green, J. C. (1986). Calcium carbonate deposition in the motile (Crystallolithus) phase of Coccolithus pelagicus (Prymnesiophyceae). British Phycological Journal, 21(4), 359-370.
  271. Sadeghi, A., Dinter, T., Vountas, M., Taylor, B., Altenburg-Soppa, M., & Bracher, A. (2012). Remote sensing of coccolithophore blooms in selected oceanic regions using the PhytoDOAS method applied to hyper-spectral satellite data. Biogeosciences, 9(6), 2127-2143.
  272. Sáez, A. G., Engel, H., Medlin, L. K., & Huss, V. A. (2001). Plastid genome size and heterogeneous base composition of nuclear DNA from Ochrosphaera neapolitana (Prymnesiophyta). Phycologia, 40(2), 147-152.
  273. Sáez, A. G., Probert, I., Geisen, M., Quinn, P., Young, J. R., & Medlin, L. K. (2003). Pseudo-cryptic speciation in coccolithophores. Proceedings of the National Academy of Sciences, 100(12), 7163-7168.
  274. Sanders, D., Pelloux, J., Brownlee, C., & Harper, J. F. (2002). Calcium at the crossroads of signaling. The Plant Cell, 14 (suppl 1), S401-S417.
  275. Schussnig, B. (1930). Ochrosphaera neapolitana, nov. gen., nov. spec., eine neue Chrysomonade mit Kalkhülle. Plant Systematics and Evolution, 79(2), 164-170.
  276. Shiraiwa, Y. (2003). Physiological regulation of carbon fixation in the photosynthesis and calcification of coccolithophorids. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 136(4), 775-783.
  277. Siesser, W. G. (1994). Historical background of coccolithophore studies. Coccolithophores. Cambridge University Press, Cambridge, 13-37.
  278. Siesser, W. G., & Winter, A. (1994). Composition and morphology of coccolithophore skeletons. Coccolithophores, edited by: Winter, A. and Siesser, WG, Cambridge Univ. Press, Cambridge, 15, 51-62.
  279. Sikes, C. S., & Wilbur, K. M. (1982). Functions of coccolith formation. Limnology and Oceanography, 27(1), 18-26.
  280. Smayda, T. J. (1956). A quantitative analysis of the phytoplankton of the Gulf of Panama III. General ecological conditions and the phytoplankton dynamics at 8° 45’N, 79° 23’W from November 1954 to May 1957. Inter-American Tropical Tuna Commission Bulletin, 11(5), 355-612.
  281. Sorby, H. C. (1861). XIX.—On the organic origin of the so-called ‘Crystalloids’ of the chalk. Journal of Natural History, 8(45), 193-200.
  282. Sprengel, C., & Young, J. R. (2000). First direct documentation of associations of Ceratolithus cristatus ceratoliths, hoop-coccoliths and Neosphaera coccolithomorpha planoliths. Marine Micropaleontology, 39(1), 39-41.
  283. Stacey, V. J., & Pienaar, R. N. (1980). Cell division in Hymenomonas carterae (Braarud et Fagerland) Braarud (Prymnesiophyceae). British Phycological Journal, 15(4), 365-376.
  284. Steinmetz, J. C. (1991). Calcareous nannoplankton biocoenosis: sediment trap studies in the Equatorial Atlantic, Central Pacific, and Panama Basin. Edited by Susumu Honjo, Woods Hole Oceanographic Institution, Woods Hole, Ocean Biocoenosis Series No. 1.
  285. Steinmetz, J. C. (1994). Sedimentation of coccolithophores. Coccolithophores, 179-198.
  286. Steinmetz, J. C. (1994). Stable isotopes in modern coccolithophores. Coccolithophores, Cambridge University Press, Cambridge, 219-229.
  287. Stoll, H. M., Klaas, C. M., Probert, I., Encinar, J. R., & Alonso, J. I. G. (2002). Calcification rate and temperature effects on Sr partitioning in coccoliths of multiple species of coccolithophorids in culture. Global and Planetary Change, 34(3), 153-171.
  288. Stoll, H. M., Rosenthal, Y., & Falkowski, P. (2002). Climate proxies from Sr/Ca of coccolith calcite: calibrations from continuous culture of Emiliania huxleyi. Geochimica et Cosmochimica Acta, 66(6), 927-936.
  289. Stoll, H. M., Shimizu, N., Archer, D., & Ziveri, P. (2007). Coccolithophore productivity response to greenhouse event of the Paleocene–Eocene Thermal Maximum. Earth and Planetary Science Letters, 258(1), 192-206.
  290. Stoll, H. M., & Schrag, D. P. (2001). Sr/Ca variations in Cretaceous carbonates: relation to productivity and sea level changes. Palaeogeography, Palaeoclimatology, Palaeoecology, 168(3), 311-336.
  291. Stoykova, K., & Ivanov, M. (2004). Calcareous nannofossils and sequence stratigraphy of the Cretaceous/Tertiary transition in Bulgaria. Journal of Nannoplankton Research, 26, 47-71.
  292. Street, C., & Bown, P. R. (2000). Palaeobiogeography of early Cretaceous (Berriasian–Barremian) calcareous nannoplankton. Marine Micropaleontology, 39(1), 265-291.
  293. Sorby, H. C. (1861). XIX.—On the organic origin of the so-called ‘Crystalloids’ of the chalk. Journal of Natural History, 8(45), 193-200.
  294. Sutde, C. A., Chan, A. M., & Cottrell, M. T. (1990). Infection of phytoplankton by viruses and reduction of primary productivity. Nature, 347, 467-469.
  295. Sym, S., & Kawachi, M. (2000). Ultrastructure of Calyptrosphaera radiata, sp. nov.(Prymnesiophyceae, Haptophyta). European Journal of Phycology, 35(3), 283-293.
  296. Takayama, T. (1967). First report on nannoplankton of the Upper Tertiary and Quaternary of the southern Kwanto region, Japan. Geol. BA, 110, 169-198.
  297. Tan, S. H. (1927). Discoasteridae incertae sedis. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen Amsterdam, 30, 411-419.
  298. Tanaka, Y. (1991). Calcareous nannoplankton thanatocoenoses in surface sediments from seas around Japan., 08.09.2015.
  299. Taylor, A. R., & Brownlee, C. (2003). A novel Cl− inward-rectifying current in the plasma membrane of the calcifying marine phytoplankton Coccolithus pelagicus. Plant Physiology, 131(3), 1391-1400.
  300. Taylor, A. R., Russell, M. A., Harper, G. M., Collins, T. F. T., & Brownlee, C. (2007). Dynamics of formation and secretion of heterococcoliths by Coccolithus pelagicus ssp. braarudii. European Journal of Phycology, 42(2), 125-136.
  301. Theodoridis, S. (1984). Calcareous nannofossil biozonation of the Miocene and revision of the helicoliths and discoasters. Utrecht micropaleontological bulletins, 32.
  302. Thierstein, H. R., Geitzenauer, K. R., Molfino, B., & Shackleton, N. J. (1977). Global synchroneity of late Quaternary coccolith datum levels Validation by oxygen isotopes. Geology, 5(7), 400-404.
  303. Thierstein, H. R., & Young, J. R. (2004). Coccolithophores: from molecular processes to global impact. Springer Science & Business Media.
  304. Thomsen, H. A. (1979). Electron microscopical observations on brackish-water nannoplankton from the Tviirminne area, SW coast of Finland ‘.
  305. Thomsen, H. A. (1980). Quaternariella obscura gen. et sp. nov.(Prymnesiophyceae) from West Greenland. Phycologia, 19(4), 260-265.
  306. Thomsen, H. A. (1980). Turrisphaera polybotrys sp. nov.(Prymnesiophyceae) from West Greenland. Journal of the Marine Biological Association of the United Kingdom, 60(02), 529-537.
  307. Thomsen, H. A. (1980). Two species of Trigonaspis gen. nov.(Prymnesiophyceae) from West Greenland. Phycologia, 19(3), 218-229.
  308. Thomsen, H. A. (1980). Wigwamma scenozonion sp. nov.(Prymnesiophyceae) from West Greenland. British Phycological Journal, 15(4), 335-342.
  309. Thomsen, H. A. (1981). Identification by electron microscopy of nanoplanktonic coccolithophorids (Prymnesiophyceae) from West Green-land, including the description of Papposphaera sarion sp. nov. British Phycological Journal, 16(1), 77-94.
  310. Thomsen, H. A., Bj⊘rn, P. D. P., H⊘jlund, L., Olesen, J. R., & Pedersen, J. B. (1995). Ericiolus gen. nov.(Prymnesiophyceae), a new coccolithophorid genus from polar and temperate regions. European Journal of Phycology, 30(1), 29-34.
  311. Thomsen, H. A., Buck, K. R., Coale, S. L., Garrison, D. L., & Gowing, M. M. (1988). Nanoplanktonic coccolithophorids (Prymnesiophyceae, Haptophyceae) from the Weddell Sea, Antarctica. Nordic journal of botany, 8(4), 419-436.
  312. Thomsen, H. A., & Oates, K. (1978). Balaniger balticus gen. et sp. nov.(Prymnesiophyceae) from Danish coastal waters. Journal of the Marine Biological Association of the United Kingdom, 58(03), 773-779.
  313. Thomsen, H. A., Østergaard, J. B., & Hansen, L. E. (1991). Heteromorphic Life Histories in Arctic Coccolithophorids (Prymnesiophyceae). Journal of Phycology, 27(5), 634-642.
  314. Thomsen, H. A., Østergaard, J. B., & Heldal, M. (2013). Coccolithophorids in polar waters: Wigwamma spp. revisited. Acta Protozoologica, 52(4), 237.
  315. Thomson, C. W. (1874). Preliminary Notes on the Nature of the Sea-Bottom Procured by the Soundings of HMS’Challenger’during Her Cruise in the Southern Sea in the Early Part of the Year 1874. Proceedings of the Royal Society of London, 23(156-163), 32-49.
  316. Tillmann, U. (1998). Phagotrophy by a plastidic haptophyte, Prymnesium patelliferurn. Aquatic Microbial Ecology, 14, 155-160.
  317. Toker, V., & Erkan, E. (1985). Nannoplankton Biostratigraphy of Eocene Formations in the Geli-Bolu Peninsula. Bulletin of the Mineral Research and Exploration Institute of Turkey, 101, 25, 44.
  318. Tortell, P. D. (2000). Evolutionary and ecological perspectives on carbon acquisition in phytoplankton. Limnology and Oceanography, 45(3), 744-750.
  319. Tremolada, F., Bornemann, A., Bralower, T. J., Koeberl, C., & van de Schootbrugge, B. (2006). Paleoceanographic changes across the Jurassic/Cretaceous boundary: The calcareous phytoplankton response. Earth and Planetary Science Letters, 241(3), 361-371.
  320. Tyrrell, T., & Taylor, A. H. (1996). A modelling study of Emiliania huxleyi in the NE Atlantic. Journal of Marine Systems, 9(1), 83-112.
  321. Vairavamurthy, A., Andreae, M. O., & Iverson, R. L. (1985). Biosynthesis of dimethylsulfide and dimethylpropiothetin by Hymenomonas carterae in relation to sulfur source and salinity variations. Limnology and Oceanography, 30(1), 59-70.
  322. Van der Wal, P., De Bruijn, W. C., & Westbroek, P. (1985). Cytochemical and X-ray microanalysis studies of intracellular calcium pools in scale-bearing cells of the coccolithophoridEmiliania huxleyi. Protoplasma, 124(1-2), 1-9.
  323. Van der Wal, P., De Jong, E. W., Westbroek, P., De Bruijn, W. C., & Mulder-Stapel, A. A. (1983). Ultrastructural polysaccharide localization in calcifying and naked cells of the coccolithophorid Emiliania huxleyi. Protoplasma, 118(2), 157-168.
  324. Venrick, E. L. (1982). Phytoplankton in an oligotrophic ocean: observations and questions. Ecological Monographs, 129-154.
  325. Verbeek, J. W. (1989). Recent calcareous nannoplankton in the southernmost Atlantic. Polarforschung, 59(1/2), 45-60.
  326. Wade, B. S., & Bown, P. R. (2006). Calcareous nannofossils in extreme environments: the Messinian salinity crisis, Polemi Basin, Cyprus. Palaeogeography, Palaeoclimatology, Palaeoecology, 233(3), 271-286.
  327. Wallich, G. C. (1877). XXXIV.—Observations on the Coccosphere. Journal of Natural History, 19(112), 342-350.
  328. Watabe, N. (1967). Crystallographic analysis of the coccolith of Coccolithus huxleyi. Calcified tissue research, 1(1), 114-121.
  329. Watabe, N., & Wilbur, K. M. (1966). Effects of temperature on growth, calcification, and coccolith form in Coccolithus huxleyi (Coccolithineae). Limnology and Oceanography, 11(4), 567-575.
  330. Watkins, D. K., Cooper, M. J., & Wilson, P. A. (2005). Calcareous nannoplankton response to late Albian oceanic anoxic event 1d in the western North Atlantic. Paleoceanography, 20(2).
  331. Watkins, D. K., & Self‐Trail, J. M. (2005). Calcareous nannofossil evidence for the existence of the Gulf Stream during the late Maastrichtian. Paleoceanography, 20(3).
  332. Web, M. F., & Web, M. F. (1988). Role of microbes in pelagic food webs: a revised concept. Limnology and Oceanography, 33(5), 1225-1227.
  333. Weiner, S., & Dove, P. M. (2003). An overview of biomineralization processes and the problem of the vital effect. Reviews in Mineralogy and Geochemistry, 54(1), 1-29.
  334. Wheeler, P. A., North, B. B., & Stephens, G. C. (1974). Amino acid uptake by marine phytoplankters. Limnology and Oceanography, 19(2), 249-259.
  335. Wilson, W. H., Tarran, G., & Zubkov, M. V. (2002). Virus dynamics in a coccolithophore-dominated bloom in the North Sea. Deep Sea Research Part II: Topical Studies in Oceanography, 49(15), 2951-2963.
  336. Winter, A., Jordan R. W. & Roth, P. H. (1994). Biogeography of living coccolithophores in ocean waters. Coccolithophores. Cambridge University Press, Cambridge, 161-177.
  337. Winter, A., & Siesser, W. G. (1994). Atlas of living coccolithophores. Coccolithophores. Cambridge University Press, Cambridge, 107-159.
  338. Winter, A., & Siesser, W. G. (1994). Coccolithophores. Cambridge University Press.
  339. Young, J. R. (1987). Possible functional interpretations of coccolith morphology. Abhandlungen der Geologischen Bundesanstalt, 39, 305-313.
  340. Young, J. R. (1994). Functions of coccoliths. Coccolithophores. Cambridge University Press, Cambridge, 63-82.
  341. Young, J. R., Bergen, J. A., Bown, P. R., Burnett, J. A., Fiorentino, A., Jordan, R. W., Kleijne, A., Van Neil, B. E., Romein, A. J. T., & Von Salis, K. (1997). Guidelines for coccolith and calcareous nannofossil terminology. Palaeontology, 40(4), 875-912.
  342. Young, J. R., & Bown, P. R. (1991). An ontogenetic sequence of coccoliths from the Late Jurassic Kimmeridge Clay of England. Palaeontology, 34(4), 843-850.
  343. Young, J. R., Davis, S. A., Bown, P. R., & Mann, S. (1999). Coccolith ultrastructure and biomineralisation. Journal of Structural Biology, 126(3), 195-215.
  344. Young, J. R., Didymus, J. M., Brown, P. R., Prins, B., & Mann, S. (1992). Crystal assembly and phylogenetic evolution in heterococcoliths. Nature, 356(6369), 516-518.
  345. Young, J. R., Geisen, M., Cros, L., Kleijne, A., Sprengel, C., Probert, I., & Østergaard, J. (2003) A guide to extant coccolithophore taxonomy. International Nannoplankton Association.
  346. Young, J. R., Geisen, M., & Probert, I. (2005). A review of selected aspects of coccolithophore biology with implications for paleobiodiversity estimation. Micropaleontology, 51(4), 267-288.
  347. Young, J. R., & Henriksen, K. (2003). Biomineralization within vesicles: the calcite of coccoliths. Reviews in mineralogy and geochemistry, 54(1), 189-215.
  348. Young, J. R., & Ziveri, P. (2000). Calculation of coccolith volume and it use in calibration of carbonate flux estimates. Deep sea research Part II: Topical studies in oceanography, 47(9), 1679-1700.
  349. Zhou, C., Jiang, Y., Liu, B., Yan, X., & Zhang, W. (2012). The relationship between calcification and photosynthesis in the coccolithophorid Pleurochrysis carterae. Acta Ecologica Sinica, 32(1), 38-43.
  350. Ziveri, P., Rutten, A., De Lange, G. J., Thomson, J., & Corselli, C. (2000). Present-day coccolith fluxes recorded in central eastern Mediterranean sediment traps and surface sediments. Palaeogeography, Palaeoclimatology, Palaeoecology, 158(3), 175-195.
  351. Zondervan, I. (2007). The effects of light, macronutrients, trace metals and CO 2 on the production of calcium carbonate and organic carbon in coccolithophores—a review. Deep Sea Research Part II: Topical Studies in Oceanography, 54(5), 521-537.
  352. Zondervan, I., Rost, B., & Riebesell, U. (2002). Effect of CO 2 concentration on the PIC/POC ratio in the coccolithophore Emiliania huxleyi grown under light-limiting conditions and different day lengths. Journal of Experimental Marine Biology and Ecology, 272(1), 55-70.
  353. Zondervan, I., Zeebe, R., Rost, B., & Riebesell, U. (2001). Decreasing marine biogenic calcification: A negative feedback on rising atmospheric pCO2. Global Biogeochemical Cycles, 15(2), 507-516.